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Abstract

Counting animals to estimate their population sizes is often essential for their management and conservation. Since
practitioners frequently rely on indirect observations of animals, it is important to better understand the relationship
between such indirect indices and animal abundance. The Formozov-Malyshev-Pereleshin (FMP) formula provides a
theoretical foundation for understanding the relationship between animal track counts and the true density of species.
Although this analytical method potentially has universal applicability wherever animals are readily detectable by their
tracks, it has long been unique to Russia and remains widely underappreciated. In this paper, we provide a test of the FMP
formula by isolating the influence of animal travel path tortuosity (i.e., convolutedness) on track counts. We employed
simulations using virtual and empirical data, in addition to a field test comparing FMP estimates with independent estimates
from line transect distance sampling. We verify that track counts (total intersections between animals and transects) are
determined entirely by density and daily movement distances. Hence, the FMP estimator is theoretically robust against
potential biases from specific shapes or patterns of animal movement paths if transects are randomly situated with respect
to those movements (i.e., the transects do not influence animals’ movements). However, detectability (the detection
probability of individual animals) is not determined simply by daily travel distance but also by tortuosity, so ensuring that all
intersections with transects are counted regardless of the number of individual animals that made them becomes critical for
an accurate density estimate. Additionally, although tortuosity has no bearing on mean track encounter rates, it does affect
encounter rate variance and therefore estimate precision. We discuss how these fundamental principles made explicit by
the FMP formula have widespread implications for methods of assessing animal abundance that rely on indirect
observations.
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Introduction

Estimating animal numbers is often a basic requirement for

determining the status of species. However, this task is deceptively

simple and no single best approach exists; techniques that work

well in some situations are useless in others [1]. Many terrestrial

mammals are nocturnal, cryptic in appearance, and generally

adept at avoiding being seen, which limits well-developed methods

of direct observation, including distance sampling [2–5]. These

challenges leave indirect observation, for example via animal

tracks or remote photography, as often the only realistic option.

In many parts of the world, conservationists rely on animal track

surveys as an indispensable tool. Animal track surveys are used in a

range of efforts, such as large-scale biodiversity monitoring in

northern Europe [6,7], North America [8], and Australia [9],

habitat and land use impact assessments [10–16], planning

sustainable harvest of ungulates and furbearers [17–23], managing

invasive species [24–27], and monitoring endangered populations

such as black rhino Diceros bicornis [28], tigers Panthera tigris [29,30],

Florida panther Puma concolor [31], wolverine Gulo gulo [32,33], and

polar bears Ursus maritimus [34]. Where substrates are suitable,

practitioners continue to use track surveys because they are simple,

practical, inexpensive, and readily produce detections for all

terrestrial animals including those otherwise difficult to detect.

Ironically, science may have origins in tracking. Liebenberg [35]

notes that a fully modern human brain evolved when all humans

were hunter-gatherers and argues that efficient tracking techniques

necessary for successful acquisition of prey still practiced by

contemporary hunter-gatherers were the origin of creative

hypothetico-deductive thought processes now made explicit by

modern science.

In spite of this widespread reliance on tracks and historical

perspective, theoretical developments to advance our understand-

ing of the relationship between tracks and their makers’ true

population density have generally been sidelined in favour of

direct sightings or technologically advanced approaches to wildlife

science. While there have been some creative approaches to

estimating density from track counts [36,37], such counts are most

often relegated to simple indices of relative abundance (e.g., [38–

42]). Sometimes, these indices are calibrated to true density

through double sampling [43–47]. In both cases, the relationship

between the index and the population density is assumed to be

linear, monotonic, and stable. It is this failure to account for

changing detection probabilities that has prompted criticisms on
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the use of such indices [48,49], despite urgent practical reasons for

conservationists defending their use [50,51]. Wildlife management

and conservation practitioners around the world would benefit

from a better understanding of the mechanistic basis linking

indirect observations, such as track counts, to animal abundance.

The Formozov-Malyshev-Pereleshin (FMP) formula is an

analytical method for converting track counts to population

density. This formula was first developed over 80 years ago to

estimate game numbers in the snowy regions of Russia. The

formula’s conceptual basis and derivation is described in [52]. In

short, it is derived from the probabilistic intersection of lines of

specified lengths within a defined area and therefore describes the

relationship of both transect length and animal day range (lines) to

track counts (intersections) and animal density. The formula has

the following form:

D~
p

2

x

SM̂M
,

where x is the total number of track crossings over one 24-hour

period, S is the total transect length, and M̂M is the mean daily

travel distance for all animals in the study area.

Since its recent introduction to the English scientific literature

[52], the FMP formula has prompted a closer look at ideal gas

models and the development of a parallel approach to estimate

density using camera trapping rates [53]. However, despite

widespread applicability, the FMP formula still remains underap-

preciated and is rarely applied outside of Russia. Previous work

has addressed the formula’s theoretical basis [52], but perhaps the

simplicity of the derived relationship leaves lingering doubts

regarding the spatial element of animal movement influencing

detectability and encounter rates. Concerns over the non-

randomness of animal movements seem to persist (see [54]),

although these concerns have been addressed to some extent in

recent reviews of ideal gas models [55,56]. Most work has been

based on simulations and there have been few field tests to address

doubts regarding the non-random movements of real animals,

their non-random dispersions, and their frequently non-indepen-

dent movements (but see [53]).

In this paper, we separate animal movements into their day

range and tortuosity components to examine the FMP formula.

We use three levels that progressively decrease randomness and

increase the realism of movements and space use (Table 1). If the

FMP formula is fundamentally valid, specific shapes of animal

movement paths should be irrelevant, i.e., a population of animals

displaying linear movements and another population of equivalent

density and day ranges but displaying convoluted movements

would show no difference in their mean number of track crossings

and would therefore be estimated with equal accuracy. We

constructed these scenarios using virtual animal populations

simulated to exhibit the desired parameters over the range of

extremes expected to be encountered in real systems. We then

examined two species that showed qualitative and quantifiable

differences in the spatial patterns of their daily movements. Using

accurate tracings of their actual daily travel paths, we simulated

their populations with a random dispersion and tested how

accurately the FMP formula could estimate their numbers. This

same technique has also been employed previously with three

species of deer and wild boar [52,57]. Finally, there is an expressed

need to compare FMP estimates of real populations with

independent density estimates [52]. We make this comparison

using two sympatric antelope populations since these animals are

readily visible and amenable to distance sampling with line

transects. Although we use examples from a specific context by

necessity, our goal is broad and these explorations reveal a more

general understanding of how animal movement parameters

influence their detection. While some findings are not strictly

novel, our purpose is to make these findings relevant and advance

the field of tracking to benefit conservation.

Methods

Study Area
Data collection occurred in the KD1 Wildlife Management

Area directly north of and adjacent to the Kgalagadi Transfrontier

Park in southwestern Botswana. The Government of Botswana via

the Ministry of Environment, Wildlife and Tourism and Depart-

ment of Wildlife and National Parks granted approvals and

permits (numbers EWT 8/36/4 XII (35), WP/RES/15/2/2 XXII

(87)) to conduct the study within this publically owned, partially

protected area. Since the field sampling techniques were non-

invasive, ethics approval was not required. An area within 30 km

of the unfenced park boundary was selected on the basis of its

habitat uniformity and its high densities of the target antelope

species. Human impacts in this area are minimal since the nearest

settlement is a subsistence-pastoral community 70 km away. The

country is relatively open semiarid savanna overlying a consistent

sandy substrate. The plant community coincides with the Schmidtia

kalahariensis type [58]; the dominant species are Acacia luederitzii,

Acacia erioloba, Grewia flava, and S. kalahariensis. Visibility is good in

the open savanna and tracking conditions are excellent. We

collaborated with local tracking experts and horsemen from the

adjacent remote area settlement of Zutshwa to conduct the field

study.

Track Counts
A single 10 km transect was created to bisect the unbounded

study area. Track crossings were counted along this transect over

six consecutive 24-hour periods by observers on specialised seats

mounted to the front of a vehicle travelling at 6–8 km h21. One

expert local tracker and DK conducted all of the observations. No

effort was made to eliminate subsequent crossings of the same

individual animal. Surveys began at approximately the same time

Table 1. Differentiation of animal movements and dispersion with progressively increasing realism over three levels of testing.

Animal spatial characteristics

Level of testing movement dispersion

Simulation (virtual animals) random random

Simulation (empirical movements) non-random random

Real population comparison non-random non-random

doi:10.1371/journal.pone.0096598.t001

Estimating Density from Animal Travel Paths

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e96598



each morning (08:00 h) and progressed at a similar rate, while

concurrently a heavy steel beam was dragged behind the vehicle,

which effectively obliterated tracks. This technique ensured a

precise 24-hour period for track accumulation.

Diel Animal Movement
We selected two ungulate species thought to exhibit general

differences in both spatial dispersion and the pattern of their travel

paths: gemsbok Oryx gazella gazella and steenbok Raphicerus

campestris. We wanted accurate measures of these species’ daily

travel distances and spatial tracings of their daily travel paths at

high resolution.

We followed the tracks of individual animals to retrace the path

that they walked. GPS data-loggers (Columbus V-900, Victory

Technology, Fujian, China) programmed to take fixes at 1 s

intervals captured fine-ruler tracings of each animal’s movement.

Steenbok were tracked on foot and gemsbok were traced from

horseback. Different ecologies dictated different approaches to

obtaining diel tracings.

Steenbok pairs defend small territories (0.6 km2; [59]), which

precludes forward-tracing their movements within a diel period

because the presence of trackers invariably influences those

movements. Instead, we opportunistically used rainfall events that

reset the track record. When rainfall ended during the day, we

sighted steenbok 24 h later. This was possible because steenbok

are abundant and easy to see. From sighting, we back-tracked the

animal to the point where the tracks became marked by raindrops.

For gemsbok, we spotted animals in the mid-morning. The next

day, early in the morning, the animal was forward-tracked from

the point of sighting. The tracing was terminated when the animal

was re-sighted or when the animal obviously fled the approaching

horsemen. In some instances, tracings were completed after 24 h

had elapsed. Excess distance was subtracted from the travel record

according to the fraction of the 24-hour period that had elapsed.

We used a simple metric of tortuosity, calculated as a ratio of the

total daily travel distance divided by the distance between the start

and finish locations, to quantify differences in spatial patterns of

steenbok and gemsbok travel paths.

Line Transects
Since both steenbok and gemsbok are abundant enough to be

readily visible, we used distance sampling with line transects to

independently estimate density. We sampled along three parallel,

equally spaced 10 km transects, each separated by 3 km. The

centre transect was the same as that used for the track counts.

Transects were created simply by driving a vehicle off-road and

were sampled several times during daylight hours at a speed of 20–

30 km h21. Animals were spotted by the driver and by two

observers positioned on the tracker seats. When animals were

spotted, their group size was determined and the vehicle was

stopped when the line of sight to the animal(s) was at an angle

perpendicular to the transect. The distance between the animal(s)

and the transect was determined with a laser rangefinder.

Occasionally, when animals fled before the vehicle could reach

the perpendicular location, a tracker would walk to the place

where the animal(s) was standing so that an accurate reading could

be obtained with the rangefinder. Densities with 95% bootstrap

confidence intervals (CIs) were estimated using conventional

distance sampling [60] with Distance 6 software [61]. We selected

detection probability functions and adjustments based on Akaike

Information Criterion and graphical best fits to the sighting data.

Simulations
We simulated virtual animal populations exhibiting incremental

levels of travel path tortuosity (t), across combinations of density

(D) and day range (M ) expected to approximate the range in

variation of most terrestrial species for which tracking is

applicable.

We began with a conceptual area of 2500 km2 (50650 km2).

For each scenario of animal D, M, and t, one straight-line transect

10 km in length was imported into the area with a random starting

location and orientation. Then, using an appropriate density,

‘‘animals’’ were randomly imported as points from which they

moved in random directions to the specified M and t, as described

below. This process was repeated 1200 times, resulting in a

12000 km survey effort for each permutation of D, M, and t. We

simulated t by beginning with a population exhibiting straight-line

movements, then incrementally increased the number of ‘‘turns’’

the animals made by breaking the movement paths at random

distances and assigning a random turn angle at each vertex. This

approach simulates an uncorrelated or pure random walk.

Incremental tortuosity was denoted by t= 0 (straight lines), t= 1

(single turn), t= 2 (two turns)… 10, 20, 30, 40, 50. Within each

level, the tortuosity of individual ‘‘animal’’ paths varied widely

because the turn angles were random (between 0 and 2p);

however, the average tortuosity for the population increased in

proportion with the total number of turns. The levels of movement

length were M = 0.3, 3, 10, 30 km and the levels of density were

D= 0.0004 (one animal), 0.0002, 0.004, 0.002 0.04, 0.02, 0.4, 2,

and 4 km22. Intersections between both every ‘‘animal’’ travel

path and between each path segment and the transect were

summed for each transect.

To increase the spatial realism of the simulation, virtual

populations were unbounded by the conceptual area. Animals

were dispersed randomly at a specified density within the area, but

equally throughout a larger buffer area. The animals were then

permitted to move without regard to boundaries. Transect

intersections included animals originating inside and outside the

conceptual area. For each scenario, an equal number of animals

were just as likely to move from inside the area to outside the area

and vice versa. Structuring the simulation in this way avoided edge

effects and most closely approximated reality when applying a

track transect survey to an unenclosed population.

In addition to virtual populations, we simulated populations of

both antelope species using their real travel paths. Empirical paths

were pulled randomly with replacement from the available data set

and imported into the conceptual survey and buffer area with

random starting points and orientations until the desired number

of animals was reached for a range of densities from 0.02–4 km22.

A 10 km transect was then imported with a random starting point

and orientation, over which the transect intersections were

enumerated. This process was repeated 500 times. Notably, the

locations and orientations of both the travel paths and transects

were randomized over each iteration. The same consideration for

movement in and out of the study area was also applied.

FMP Calculations
We used nonparametric bootstrapping [62] to calculate the

uncertainty in the FMP density estimates. For real populations,

both daily replicate transects and available movement paths were

resampled with replacement at original sample sizes to produce

bootstrap replicates of x/S and M̂M, from which one estimate of D
was calculated using the FMP formula. This process was repeated

5000 times to generate the distribution of D for each species, from

which the mean and bias corrected and accelerated 95% CIs were

calculated. We used a similar approach for the simulated

Estimating Density from Animal Travel Paths
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populations, whereby bootstrap replicates of x/S were generated

by resampling from the entire data set of iterations in proportion

to the appropriate survey effort (i.e., 100 km survey effort

generated by resampling 10 random transect iterations, 250 km

from 25 transects, etc.). The calculations for virtual populations

differed only in that M was a single value and therefore did not

contribute to uncertainty in the resulting density estimates.

Results

Simulated Animal Movements
The fundamental linear relationships defined by the FMP

formula were verified by the simulation results. For example, a

doubling of D results in a doubling of x/S, which corroborates

previous findings [57]. Similarly, it was clear that for a constant

value of D, a doubling in M results in a doubling of x/S.

When Dand M were held constant, the mean number of

intersections per transect did not change over levels of t, from

straight-line movements to highly tortuous random walks. A subset

of outputs from several combinations reveals this consistency (left

panels in Fig. 1). Because the mean encounter rates did not

change, the FMP formula estimated densities accurately regardless

of the shape taken by the travel paths. At the maximum number of

transect replicates (1200), the mean estimates from all scenario

combinations deviated by a maximum of 2% from the true

simulated densities.

Although tortuosity had no effect on the mean encounter rates

and the subsequent accuracy of the FMP estimation, detectability

was affected. Detection probabilities, reflected by the number of

individual animals that intersected transects, declined with

increasing tortuosity (right panels in Fig. 1). Simulated animal

movement paths originating from the same point (Fig. 2) help to

visualise the declining detectability that resulted in the pattern in

Fig. 1 (right panels). With increasing tortuosity, the average

displacement covered by the paths decreased, so that paths at t = 8

covered just over half of the Euclidean distance as t = 0. Transects

that sampled populations exhibiting the most tortuous paths

(t = 50) counted fewer than 30% of the individual animals that

were counted when those populations exhibited straight-line

movements (t = 0). The results indicated that detectability is

determined by both day range and tortuosity. This effect could

only be established via simulations because in a majority of

situations it is impractical and impossible to determine with

certainty if tracks belong to the same or different individual

animals.

A further consequence of the interaction of day range and

tortuosity is uncertainty in the resulting density estimates. The

sample variance increased when the travel paths became shorter

and more convoluted. The effect is apparent over a broad range of

expected daily movements for terrestrial species (Fig. 3). Species

with smaller bodies are more likely to occupy the low end of day

range (0.3 km); examples include tortoises, some weasels, mon-

gooses, primates, and likely many rodents [63–65]. At the other

extreme, spotted Crocuta crocuta and brown hyaenas Hyaena brunnea

in the Kalahari have been recorded moving on average 26.5 and

31.1 km per night, respectively [66]. However, the majority of

terrestrial species for which track counts are applicable are likely to

have daily ranges somewhere in between these values (see [64,65]).

When the survey effort reached 250 km (1 km sampled for every

10 km22), the 95% CIs ranged at the extremes from 54–154% of

the true density (panel d of Fig. 3) to 97–102% of the true density

(panel c of Fig. 3). However, these results likely overestimate the

precision that can be achieved in real populations because the

virtual animals in the simulations were dispersed randomly, the

group size was therefore one animal, and M̂M did not vary.

Therefore, the outputs in Fig. 3 primarily illustrate the general

effect of day range and tortuosity on precision.

Simulation Using Empirical Travel Paths
We traced 17 gemsbok and six steenbok diel travel paths.

Despite body sizes that differ by over an order of magnitude, the

two species’ daily movement distances did not differ considerably;

gemsbok travelled 5.65 (coefficient of variation 0.42) km on

average and steenbok travelled 4.20 (0.34) km on average.

However, the patterns of their travel paths were markedly

different. Gemsbok had more linear movements, covering larger

areas in the landscape. This aspect was reflected in a tortuosity

metric of 4.22 (0.62). Steenbok, confined to relatively small

territories, displayed much more tortuous movement patterns,

with a tortuosity metric of 10.86 (0.31).

When empirical movements were dispersed randomly in the

simulation space, gemsbok had higher detectability than steenbok

by virtue of the differences in the shapes of their travel paths and

resultant space use (Fig. 4). Considering day ranges that differed by

only 34.5%, at equivalent densities, 3.3 times more individual

gemsbok were detected than steenbok per transect on average.

However, if a gemsbok was detected, it was likely to intersect a

transect 2.2 times on average. In contrast, if a steenbok was

detected, it was likely to intersect a transect 5.4 times on average.

Over the range of simulated densities, when transects were

replicated 500 times, the FMP formula returned mean estimates

within 5% of their true value, which is further evidence that the

estimator is unbiased by the specific shapes of animal movement

paths. For example, when the population density was 2 km22, the

number of gemsbok was estimated to be 1.97 km22 and the

number of steenbok was estimated to be 2.03 km22 (Fig. 5). The

accuracy of these mean estimates approached the true densities

once the cumulative survey effort reached about 250 km or a

sample penetration [44] of 1 km of transect per 10 km2 of survey

area. At this effort, CIs around point estimates were 73% of the

mean density for gemsbok and 54% of the mean density for

steenbok. This precision was poorer than that of deer from

Stephens et al. [52] due to less precise estimates of M̂Marising from

smaller sample sizes. The effect of variation in M̂M on the precision

of the density estimates is illustrated by comparing with virtual

populations where the day range was constant (see the spread of

95% CIs in Fig. 3 versus Fig. 5).

Real Population Comparison
Both antelope species had similar encounter rates along the

track transect: gemsbok with 8.59 intersections km21 24 h21 on

average and steenbok with 9.58 intersections km21 24 h21.

Combining these data with their respective day ranges in the

FMP formula returned density estimates for gemsbok (2.39 km22;

95% CI: 1.57–3.23 km22), and steenbok (3.33 km22; CI: 2.71–

4.17 km22). Line transects (394 km) revealed 74 gemsbok

observations (270 individuals) and 66 steenbok observations (72

individuals). Conventional distance sampling analyses and boot-

strap CIs produced estimates for gemsbok (2.57 km22; CI: 1.43–

4.62 km22), and steenbok (3.7 km22; CI: 2.47–5.55 km22).

Despite small sample sizes and unknown true densities, the two

independent approaches returned density estimates that were

closely matched (Fig. 6). Assuming that the distance-based

estimates are accurate, this limited comparison is suggestive that

the FMP estimator was also accurate and robust to non-

independent animal movement patterns and non-random disper-

sion.

Estimating Density from Animal Travel Paths
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Track-based estimates were more precise than distance-based

estimates (Fig. 6). Transects were only 10 km in length, so direct

observations of animals per transect were limited and several line

transects had zero counts for each target species. As a result, it was

necessary to sample two additional line transects in parallel to the

centre transect to obtain a minimum number of sightings for

estimating detection functions. In contrast, track counts captured

close to 100 observations per transect. There was higher variance

Figure 1. Sample output from three combinations of simulated daily travel paths and densities. Box plots with outliers are shown; each
data point represents the numbers of intersections per transect (500 iterations) across five arbitrary levels of travel path tortuosity.
doi:10.1371/journal.pone.0096598.g001

Estimating Density from Animal Travel Paths

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e96598



in the numbers of observations on different line transects (CVs of

0.96 and 0.84) compared with track transects (CVs of 0.42 and

0.11) for gemsbok and steenbok, respectively, which was reflected

in the wider CIs shown by the distance-based estimates compared

with the FMP estimates.

Discussion

When it is suggested that counts of animal tracks can be used to

estimate population density a remarkably immediate and consis-

tent question from both biologists and laymen is ‘‘but how do you

avoid over-counting the same individual animals?’’ This issue

seems intuitively problematic. Repeated counting of individual

animals’ tracks along a transect or between spatial replicates

during a survey is frequently viewed as a problem. Some efforts

have attempted to reduce the rate of re-counting individual

animals by using arbitrary exclusion distances between sets of

tracks [67,68] or by separating transects sufficiently in space so

that the probability of a single animal being recorded on more

than one line is minimized [39,25,69,70]. Reliably distinguishing

individuals based on their tracks is much more difficult and

perhaps possible among a few species such as large cats [71–74],

rhinos [75], tapirs [76], and potentially elephants [77]. However,

exceptional trackers or detailed measurements and sophisticated

analyses are required. In contrast, counting every track intersec-

tion is repeatable and simpler than attempting to separate

individual animals, but rarely implemented because such counts

are considered to be difficult to interpret [78]. At the least, track

surveyors typically make some effort to eliminate obvious re-

crossings that are visually connected [52,79]. Decisions must be

made at the outset of every program whether to discount re-

crossings of same individual animals, simply record presence over

Figure 2. Displacement of simulated animal travel paths over levels of tortuosity. Fifty travel paths of equal length originate from a
common centroid for each level of tortuosity (numerals indicate the number of random turn angles).
doi:10.1371/journal.pone.0096598.g002

Figure 3. Effect of daily travel distance (column panels) and path tortuosity (row panels) on FMP estimate precision. Mean densities
and 95% CIs are shown from applying the FMP formula to 10 km transects sampling virtual populations at 2 km22. Dotted lines indicate the accuracy
of mean density estimates at 1200 replicates, which vary within 2% of the true density. Note that both day range and tortuosity influenced achievable
precision.
doi:10.1371/journal.pone.0096598.g003
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some spatial dimension, or enumerate each and every track. The

literature reflects little agreement on an optimal approach.

If density estimates are sought, the FMP formula suggests that

re-counting the same individual animals is not a problem and that

it is in fact desirable to count the same individuals if they re-cross

transects within the same 24-hour period, as many times as they

do. Geometry dictates a balance between the number of

intersections and the length of line segments, regardless of the

shapes of the lines. The inference is simply that individuals with

more tortuous movements are detected less but, when encoun-

tered, those individuals are generally counted a larger number of

times by virtue of the convoluted pattern of their movement.

Detectability is influenced by tortuosity; the total number of

intersections is not. The FMP formula describes the relationship

between counts and true density if correct track counting rules are

applied. A strict definition of detectability includes the probability

that tracks are observed after they intersect a transect. We expect

this probability to approach 1 in the Kalahari, where tracks are

easily visible and can be verified by more than one expert

observer. However, surveyors in different parts of the world surely

have wide variation in tracking skill level (see [71,80]) and tracker

proficiency should be addressed more often [81]. Nonetheless, our

consideration of detectability here has been limited to the more

fundamental probability of intersection between animals and

transects. This detection probability remains an imprecise concept,

determined by the interaction of day range and path tortuosity.

Among two populations with equal movement rates, we have

shown that those with more tortuous movements have lower

detectability. Likewise, if two animals have equally tortuous

movements, the animal with a longer day range will have higher

probability of being detected. The interaction of these two travel

path parameters can perhaps be conceptualised as the displace-

Figure 4. Empirical daily movements dispersed randomly in simulation space. Image capture (1:50 000) shows a single iteration of
simulation runs at 2 km22 density for (A) gemsbok and (B) steenbok. Approximately half of the randomly oriented transect (black) appears diagonally,
underlying travel paths (grey). Note that both gemsbok and steenbok have similar daily travel distances but display different tortuosity in their
movements, resulting in different spatial use.
doi:10.1371/journal.pone.0096598.g004

Figure 5. Estimates from simulated densities (2 km22) using empirical movements of (A) gemsbok and (B) steenbok. FMP point
estimates of density from a random cumulative increase in survey effort (10 km transects) are displayed along with 95% CIs.
doi:10.1371/journal.pone.0096598.g005
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ment that animals cover during their daily patterns of movement,

i.e., those individuals that cover larger distances in Euclidean

terms have greater detectability.

Implications for Occupancy
Track surveys have often been applied to model the fraction of

sampling units in a landscape where a target species is present

(occupancy) in order to monitor distributional changes [68], but

also as a surrogate for abundance to monitor trends in population

sizes [82–84]. Animals have high detection probabilities by their

tracks because such indirect observations are time integrated and

reflect animal presence over an area typically much greater than

the space within which animals can be observed directly at a

particular moment. For example, 95% of gemsbok and steenbok

sightings along line transects in the present study occurred within

355 and 120 m, respectively. Track counts certainly captured

animals that had travelled from, or to, a substantial distance

beyond which direct sightings are possible. This factor contributed

greatly to track observations in the 8–10 km21 range, while some

line transects failed to detect either species.

Minimizing the imperfect detection of species (false absences)

has become a key concern of occupancy studies [85–87]. Although

the FMP formula is unaffected by the vagaries of specific spatial

patterns of animal movements, applications utilising presence-

absence data from indirect sign are vulnerable to biases emerging

from changing animal detectability. For example, when empirical

movement paths were imported randomly to a density of

0.04 km22 (100 animals within the study area), a survey effort of

100 km (10 transects) had a .99.9% probability of detecting

gemsbok presence, but an 86% probability of detecting steenbok

presence in the area. When 500 transects were applied to these

populations in a single survey, 51% of individual transects detected

gemsbok, while the presence of steenbok was recorded on only

18.2% of transects. Differences in detectability between these two

species due to tortuosity can be seen in Fig. 4. The tortuosity of

animal movement paths may fluctuate widely within species and

individuals for any number of reasons that are difficult to predict

[88]. Since detection probabilities of animals by their tracks are

not constant, even over short periods (day to day), an appropriate

occupancy design would require repeated sampling and assume no

unmodelled heterogeneity in detection to make reliable inferences

(see [89]). The key concern is whether these heterogeneous

detection probabilities can be captured adequately by a combina-

tion of environmental covariates and conditions specific to track

accumulation period [89], or by extending the interval for track

accumulation over several days [70].

It is often reiterated that occupancy studies are advantageous

because presence-absence data are often easier and less expensive

to collect than count data (e.g., [86,90–93]). However, this

suggestion is doubtful in the case of animal track surveys. Since all

animal tracks have to be observed during a survey, we suggest that

little additional effort is required to count every track intersection,

from which presence-absence data are easily extracted later, if

desired. Hayward et al. [29] reported that despite increased

variance caused by counting repeat track intersections along

transects, this index had more power to detect declines in Amur

tigers Panthera tigris altaica than did presence-absence data.

Presence-absence studies frequently report low power and

capability to detect only large trends [20,82,94,95], require

intensive sampling protocols with a large number of replicates

and repeated sampling over short periods [85,89], and necessitate

restrictive assumptions regarding independence of sampling units

[70,96]. In contrast, the FMP estimator embraces count data while

dispensing with concern over individual animals being detected in

more than one sampling unit and negating the explicit require-

ment to estimate detectability. In many cases, the FMP formula

may provide a more parsimonious approach than modelling

occupancy as a surrogate for indexing abundance and monitoring

population trends from animal tracks.

Implications for Indexing
FMP theory clarifies the implicit assumption of all efforts that

use track counts as indices of relative abundance with which to

monitor change: average daily travel distances remain constant.

This fact of course applies equally to the indexing of camera trap

rates to density [97,98]. Practitioners need to appraise the extent

to which this assumption is true for populations separated in time

or space. If day range is density dependent, the assumed

monotonic linear relationship between track counts and true

density will not hold. For example, it is possible that a drop in

density with declining food availability may be coupled to a

disproportionate increase in day range as animals expand their

home ranges or disperse [99,100]. Changes may occur over

relatively short periods. For example, in applying the FMP

formula to estimate deer densities, Stephens et al. [52] subdivided

movement data due to differences in day range between early and

late winter. Irrespective of whether track counts or camera trap

rates are used as relative indices or converted to density using the

FMP formula and other random encounter models, there are

obvious implications for the frequency with which day range needs

to be reassessed when monitoring populations.

Calibrating track indices to independent estimates of true

density, then applying those linear models to estimate density in

other areas, is a growing practice applied to large carnivores in

southern Africa [45–47,101–103]. It is assumed during data

collection that individual animals can be differentiated and

counted once only during a survey, which may be closely

approximated with the help of extremely skilled trackers [71].

Stander [44] first mentioned ‘‘range utilisation,’’ ‘‘habitat use,’’

and ‘‘behaviour of species’’ influencing the slope of the linear

relationship between track counts and true density. If individual

animals are recorded only once during a survey (and subsequent

re-crossings are ignored), then the present results confirm that the

shapes of those individual travel paths will become important in

the index–density relationship. Stander’s [44] comments are valid

since stable animal path tortuosity must be assumed, including the

Figure 6. Density estimates of two empirical populations using
the FMP formula and Distance sampling. Displayed with 95%
bootstrap CIs.
doi:10.1371/journal.pone.0096598.g006
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assumption that movement parameters of the populations used to

generate the linear calibration model do not differ from the

populations to which the calibration model is applied. Further-

more, when multiple species are combined into a single linear

model [47], this assumption must be extended to: all species used

to generate the model and to which it is applied have equal day

ranges and movement path tortuosities.

Large carnivores in particular pose a challenge to FMP

application because their low densities require large survey efforts,

and the logistical practicalities of large survey efforts often dictate

convenience sampling by vehicle along pre-existing linear features.

Some species such as brown hyaenas are quintessential trail users

and most large carnivores habitually use linear features for ease of

travel. Indeed, many indexing and occupancy approaches are

based on such behaviour [24,82,84,104]. Recent studies [53,105]

have highlighted the importance of random placement of camera

traps with respect to naturally non-random animal movements to

avoid biased inferences – a warning that applies equally to track

transects and the FMP formula. Even though predators dispro-

portionately utilise roads and trails throughout a landscape,

randomly located sampling points or transects with respect to these

linear features will return unbiased estimates at the landscape scale

[54]. In contrast, applying the FMP formula to large carnivore-

specific surveys whereby transects are situated non-randomly

along convenience features [45–47,101–103] would presumably

result in biased density estimates. In a practical sense, it would be

useful to know whether these bias errors are generally larger or

smaller than the bias errors resulting from collapsing differential

day ranges of multiple species into a single index calibration model

[47], fluctuations in both day range and tortuosity in the animals

to which the calibration model is applied, and the error involved in

isolating individuals by their tracks. Sampling along roads and

trails is always more practical, especially when large survey efforts

are required, but practitioners should strive for random transects

with respect to animal movements for unbiased inferences when

applying the FMP method.

Conclusions

Our attempts to disprove the FMP formula through both virtual

and empirical tests revealed no flaw in the simple equation. It

appears that the number of animal crossings along lines depends

simply on the density of those animals and how far they walk; the

shape of specific movement paths is irrelevant. While spatial

elements of animal movements have no fundamental bearing on

accuracy, biases may arise from the placement of transects with

respect to the distribution of animals and principles of good survey

design, such as appropriate stratification, apply to any method

used to survey biological populations. We also stress that the

sampling intensity and total survey effort required to achieve

desirable levels of accuracy and precision in density estimates will

depend on dispersion, day range, and movement patterns, in

addition to density and group size [52,57]. In particular,

populations with lower density, clumped dispersion, larger group

sizes, shorter daily movement distances, and greater tortuosity will

require larger survey efforts to achieve the desired accuracy and

precision. The main practical limitation to the FMP approach is

obtaining accurate estimates of day range. While our capacity to

obtain and share animal movement data continues to grow with

advances in GPS technology, our ability to estimate day range

accurately from these data remains presently limited [106].

However, even coarse estimates of day range can be profitably

applied to the FMP formula for many species whose abundances

are impossible to estimate by other means [107].

Bearing the above in mind, the FMP formula should be

applicable to any terrestrial species with readily observable tracks if

three assumptions are met: (1) animal movements are random with

respect to transects, that is, naturally non-random animal

movements are not influenced by the presence of a transect, (2)

all animals that intersect transects are detected and identified

correctly, and (3) all intersections are enumerated regardless of

individuals. Several track-based research and monitoring pro-

grams use methods that already accommodate these assumptions,

including long-term data sets in the northern hemisphere [6], and

many more could easily be made amenable. Russian biologists

have understood and have been using the FMP formula for

decades. It is fortunate that this formula has become available to

English speakers because conservation practitioners around the

world can benefit from understanding and utilizing the FMP

formula.
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